43. Zum Mechanismus der sequentiellen Radikal-Cyclisierung von (Bromomethyl)silyl-ethern terpenoider Alkohole

von Ivo Lakomy1) und Rolf Scheffold*

Institut für organische Chemie, Universität Bern, Freiestrasse 3, CH-3012 Bern

(21.XII.92)

On the Mechanism of Sequential Radical Cyclization of (Bromomethyl)silyl Ethers of Terpernoid Alcohols

The cyclic products of the Bu₃SnH-promoted radical reaction of (E)-1-[(bromomethyl)dimethylsilyloxy]-2methylhept-2-ene (6) consists to 98% of a 1:2 mixture of (\pm) -(4*RS*,5*RS*)- and (\pm) -(4-*RS*,5*SR*)-4-butyl-2,2,5trimethyl-1-oxa-2-silacyclohexane (8a and 8b, respectively). It is, therefore, concluded that the 6-'endo' \rightarrow 5-'exo' tandem cyclization of the 5-methyl-3-oxa-2-siladeca-5,9-dien-1-yl radical (reaction $1 \rightarrow 2$) is not necessarily a concerted process, but may be explained as a sequence of individual steps via free-radical intermediates.

Einleitung. – Die Regioselektivität des Ringschlusses von (Hex-5-en-1-yl)-Radikalen [1] und (Silahex-5-en-1-yl)-Radikalen [2] ist gut untersucht. In diesem Zusammenhang ist das Resultat der kürzlich von uns beschriebenen, Bu₃SnH-induzierten Radikal-Reduktion des (Bromomethyl)silyl-ethers 1 bemerkenswert [3]²) (*Schema 1*). Die Bildung von **2a** und **2b** im Verhältnis von *ca.* 1:2 als einzige Cyclisierungsprodukte von 1 war unerwartet,

^a) Nur je ein Enantiomer von racemischem 2a und 2b ist dargestellt.

¹) Auszug aus der Dissertation von I. L., Universität Bern, 1991.

²) In Schema 3 der Arbeit [3] ist (t-Bu)Me₂Si für die Formeln der Verbindungen 10 und 11 durch (t-Bu)Me₂SiO zu ersetzen.

denn die entsprechende Reaktion des (Bromomethyl)silyl-ethers 3 von 2-Methylprop-2en-1-ol ergab nach Nishiyama und Mitarbeitern ein Gemisch der cyclischen 6- und 5Ring-Silyl-ether 4 und 5 im Verhältnis von 2:1 [4] (Schema 1). Da zudem bekannt war, dass (3-Oxa-2-silahex-5-en-1-yl)-Radikale bevorzugt kinetisch kontrollierte Ringschluss-Reaktionen eingehen [2], könnte die Bildung von 2 als Resultat einer (allenfalls konzertiert verlaufenden [5]) (6-'endo' \rightarrow 5-'exo')-Tandem-Cyclisierung gedeutet werden. Zur Klärung der Frage, ob in der Reaktion $1 \rightarrow 2$ die endständige Doppelbindung in 1 einen dirigierenden Einfluss auf die Regioselektivität des ersten Ringschlusses bewirkt, wurde zum Vergleich die Reaktion eines analogen Silyl-ethers 6 mit endständig abgesättigter Kette untersucht.

Resultate und Diskussionen. – Der (Bromomethyl)silyl-ether 6 (Isomerenverhältnis (E)/(Z) = 7:1) war in drei Stufen leicht zugänglich: *i*) Epoxidation von Isopren [6], *ii*) Cu¹-katalysierte Addition von Propyllithium an (2*E*)-2-Methylhept-2-en-1-ol (7) [7], *iii*) Silylierung mit (Bromomethyl)chlorodimethylsilan [4]. Die Radikal-Reaktion von 6 nach der Zinnhydrid-Methode [8] wurde unter den gleichen Bedingungen wie für die Cyclisierung $1 \rightarrow 2$ durchgeführt (langsame Zugabe einer Lösung von Bu₃SnH und 2,2'-Azobis(isobutyronitril) (AIBN) in Benzol zu 6 in kochendem Benzol; *Schema 2*). 'Flash'-

^a) Nur je ein Enantiomer von racemischen 8a und 8b ist dargestellt.

Chromatographie (Et₂O/Pentan 1:4, Silicagel) des Rohprodukts ergab eine farblose, ölige apolare Fraktion (R_f 0,50; 29% berechnet als C₁₁H₂₄OSi bzgl. 6) und den Alkohol 7 ($R_f = 0,08$; 62% bzgl. 6), entstanden durch Reduktion von 6 zum Trimethylsilyl-ether [9] und Hydrolyse an Silicagel. Gemäss anal. GS und GC/MS bestand die apolare Fraktion zu 98% aus einem Gemisch zweier Stereoisomere 8a und 8b im Verhältnis von *ca*. 1:2. Da

Fig. 1. ¹H-NMR-Übersichtsspektrum (300 MHz, CDCl₃) des Gemisches 8a/8b. δ in ppm.

8a/8b präparativ nicht zu trennen war, gelangte das Gemisch direkt zur NMR-Analyse. Im 'H-NMR-Übersichtsspektrum (*Fig. 1*) sind neben den Signalen von **8a** und **8b** keine Signale auszumachen, die auf ein 5Ring-Cyclisierungsprodukt hindeuten; es fehlt beispielsweise das *s* einer angulären Me-Gruppe. Charakteristisch für die Strukturzuordnung als (\pm)-(4*RS*,5*RS*)- bzw. (\pm)-(4*RS*,5*SR*)-4-Butyl-2,2-dimethyl-5-methyl-1-oxa-2-silacyclohexan (**8a** bzw. **8b**) sind die *d* von Me-C(5) bei $\delta = 0,80$ bzw. 0,91 (letzteres überlagert von *t*'s von Me(4')), vor allem aber die *AB*-Teile von Kopplungssystemen höherer Ordnung, die vereinfachend als *ABX*-Systeme gedeutet sind (*Fig. 2*; Zuordnungen aufgrund von 'H, 'H- und 'H, '¹³C-COSY-Spektren).

Der AB-Teil CH₂(6) des ABX-Systems an C(6) und C(5) bei 3,38–3,92 ppm (Fig. 2a) zeigt für **8a** Kopplungskonstanten geminaler H an C(6) ($J_{gem} = 11,4$ Hz) und vicinaler H ($J_{aa} = 9,8$ bzw. $J_{ae} = 3,5$ Hz) und für **8b** entsprechend $J_{gem} = 11,2$, $J_{ae} = 2,9$ und $J_{ee} = 2,3$ Hz. Der AB-Teil CH₂(3) des ABX-Systems an C(3) und C(4) bei 0,3–0,8 ppm (Fig. 2b) zeigt für **8a** und **8b** die erwartete grosse Kopplungskonstante geminaler H ($J_{gem} = 14,3$ bzw. 14,5 Hz) und vicinale Kopplungen ($J_{aa} = 11,5$ bzw. 11,5 Hz, $J_{ae} = 3,4$ bzw. 5,1 Hz). Die Zuordnung steht in Übereinstimmung mit den im ¹³C-NMR/DEPT-Spektrum gefundenen Strukturelementen.

Die Oxidation des Gemisches **8a/8b** nach *Tamao* und *Kumada* [10] mit H_2O_2 ergab in 84% Ausbeute das Gemisch zweier Diole **9a/9b** als farbloses, präparativ nicht trennbares Öl (*Schema 2*). Die ¹H- und ¹³C-NMR-Spektren zeigen ausschliesslich die für das (1:2)-Gemisch von (±)-(2RS,3RS)- und (±)-(2RS,3SR)-2-Butyl-3-methylbutan-1,4-diol (**9a** bzw. **9b**) erwarteten Signale (Zuordnungen aufgrund von ¹H,¹H- und ¹H,¹³C-COSY-Spektren).

Der Befund, wonach die Bu₃SnH-induzierte Radikal-Reaktion von 6 neben Alkohol 7 nur die Produkte **8a/8b** eines 6-'*endo*'-Ringschlusses liefert, zeigt auf, dass die nacheinander geschalteten 6-'*endo*-' \rightarrow 5-'*exo*'-Cyclisierungsschritte der Tandem-Reaktion $1 \rightarrow 2$ *nicht obligat konzentriert* verlaufen. Sequentielle Radikal-Cyclisierungen lassen sich jeHELVETICA CHIMICA ACTA - Vol. 76 (1993)

Fig. 2. Ausschnitte des ¹H-NMR-Spektrums (**300** MHz, CDCl₃) des Gemisches **8a/8b**: AB-Teile der ABX-Kopplungssysteme von a) $CH_2(6)$ und b) $CH_2(3)$

doch widerspruchsfrei als stufenweise Prozesse via transiente freie Radikal-Zwischenprodukte interpretieren.

Diese Arbeit wurde vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

Experimenteller Teil

Allgemeines. S. [3]. Ausserdem: Chemikalien und Lsgm.: Benzol, CH₂Cl₂, Et₃N, Fluka puriss p. a., Li mit 0,5% Na (50–200 µm), CuI (gereinigt nach [11]) und alle weiteren Chemikalien und Lsgm. Fluka purum. Anal. GC: Hewlett-Packard-5790-Gaschromatograph; SE-54 (1% Vinyl, 5% Phenyl, Methylsilicon) sowie 40% Heptakis(2,3,6-tri-O-propyl)- β -cyclodextrin in OV-1701, 20 m (df = 0,15 µm) und HP-1 (Methylsilicon), 12 m (df = 0,33 µm); Flammenionisationsdetektor (FID); Gehalt in % der relativen Peakflächen. Präp. GC: Perkin-Elmer-Sigma-3-Gaschromatograph; 5% Carbowax 4000 oder 5% XE-60 auf Chromosorb G-AW-DMCS, 2 m, 80–100 mesh. DC: DC-Fertigfolien Alugram[®] Sil G/UV₂₅₄ von Macherey-Nagel, D-5160 Düren; Detektion mit H₂SO₄/Vanillin. 'Flash'-Chromatographie (FC): Silicagel für FC von Baker. IR: Perkin-Elmer-782-Spektrometer. ¹H-NMR: Bruker-AC-300-Spektrometer (300 MHz), TMS (= 0 ppm) als interner Standard. MS: Varian-MAT-CH-7A-Spektrometer, Ionisierungsenergie 70 eV.

807

(E)-2-Methylhept-2-en-1-ol (7). Zu 1,88 g (0,27 mol) Li in 20 ml abs. Et₂O wurden unter N₂ innert 40 min bei -20 bis -25° 14,75 g (0,12 mol) 1-Bromopropan in 70 ml abs. Et₂O getropft (Start der Reaktion bei RT. durch Zugabe von 5 ml Bromidlsg. - nach ca. 3 min leichte Trübung der Lsg. und Li-Metall glänzend). Die rosarote, leicht trübe Lsg., wurde 1 h bei -20° gerührt, dann unter N₂ durch eine G2-Fritte in einen Tropftrichter transferiert und innert 1 h in eine Suspension von 10,20 g (53,6 mmol) CuI in 20 ml abs. Et₂O bei -50 bis -60° getropft. Nach 1 h Rühren des rotbraunen Cuprat-Reagens bei -50° wurden 4,16 g (44,6 mmol) 3,4-Epoxy-3-methylbut-1-en [6] innert 1 h bei -20 bis -30° zugetropft und dann 1,5 h bei -20° gerührt. Nach Hydrolyse mit ges. NH₄Cl/H₂O-Lsg. bei -30° wurde das Gemisch mit 10 % NH₃-Lsg. versetzt, bis eine klare, dunkelblaue Lsg. entstanden war, die 3× mit Et2O extrahiert wurde. Die vereinigten Et2O-Extrakte wurden mit ges. NaCl-Lsg. gewaschen, getrocknet (Na₂SO₄) und eingedampft. Destillation des Rohproduktes über eine Spaltrohr-Kolonne (Fisher MMS 202; Sdp. 57,7-59,0°/0 mbar) ergab 5,22 g (91%) 7 ((E/Z) 7:1). Farbloses Öl. Rf 0,41 (Et₂O/Pentan 2:5). GC (SE-54, 40-250°, 3°/min): t_R 13,2 (13% (Z)-Isomer), 13,9 (84% (E)-Isomer). IR (Film): 3330s (br.), 2960-2910s, 2880-2840s, 1670w, 1460s, 1440 (sh), 1380m, 1300w, 1225w, 1190 (sh), 1115 (sh), 1075m, 1010s, 950 (sh), 845m, 815w, 765w, 725w, 600w. ¹H-NMR (300 MHz, CDCl₃): (E)-Isomer: 5,45-5,36 (m, H-C(3)); 4,00 (s, CH₂(1)); 2,09-1,98 $(m, CH_2(4)); 1,67$ (br. s, Me-C(2)); 1,56-1,46 (br. s, OH); 1,38-1,25 $(m, CH_2(5), CH_2(6)); 0,90$ (t, J = 7, 0, Me(7)); (t, J = 7, Me(7)); (t, J = 7, Me(7)); (t, J = 7, M(Z)-Isomer: 5,34–5,27 (m, H–C(3)); 4,13 (s, CH₂(1)); 1,81–1,78 (m, Me–C(2)). ¹³C-NMR (75,5 MHz, CDCl₃; (E)-Isomer): 134,6 (C(2)); 126,6 (C(3)); 69,1 (C(1)); 31,7,27,3,22,4 (C(4), C(5), C(6)); 14,0 (C(7)); 13,6 (Me-C(2)). GC-MS (SE-54, (E)-lsomer): 129 (<1), 128 (10, M^{+1}), 113 (<1, $[M - Me]^+$), 111 (1, $[M - OH]^+$), 110 (6, $[M - H_2O]^+$, 97 (15), 95 (11), 86 (10), 85 (12), 81 (10), 71 (85), 69 (12), 68 (14), 67 (12), 58 (26), 57 (38), 55 (88), 43 (10), 71 (85), 69 (12), 68 (14), 67 (12), 58 (26), 57 (38), 55 (88), 43 (10), 51 ((100), 41 (58), 39 (26).

(E)-1-[(Bromomethyl)dimethylsilyloxy]-2-methylhept-2-en (6). Zu einer Lsg. von 1,32 g (10,3 mmol) 7, 1,4 ml (10,3 mmol) (CH₂Br)Me₂SiCl und 10 mg 4-(Dimethylamino)pyridin in 15 ml abs. CH₂Cl₂ wurden innert 30 min bei 0–5° 1,5 ml (10,7 mmol) Et₃N getropft. Dabei bildete sich ein weisser Niederschlag. Nach 3,5 h Rühren bei 0–5° wurde das Gemisch über *Celite* filtriert, mit Pentan nachgewaschen und eingedampft. Kugelrohrdestillation (50–70° Ofentemp./6·10⁻³ Torr) lieferte 2,69 g (93%) 6. Farbloses, DC-einheitliches Öl. *R*,0,80 (Et₂O/Pentan 2:5). GC: Zers. auf dem Heizblock. IR (Film): 2960s, 2930s, 2860s, 1675w, 1605w, 1460m, 1380m, 1255s, 1190w, 1135 (sh), 1105 (sh), 1060s, 960w, 930w, 865s, 840s, 815s, 795s, 745w, 725 (sh), 690w, 660w, 635w, 570w. ¹H-NMR (300 MHz, CDCl₃): (*E*)-Isomer: 5,46–5,40 (*m*, H–C(3)); 4,06 (*s*, CH₂(1)); 2,49 (*s*, (CH₂Br)Si); 2,08–1,97 (CH₂(4)); 1,62 (*s*, Me–C(2)); 1,38–1,25 (*m*, CH₂(5), CH₂(6)); 0,90 (*t*, *J* = 7,0, Me(7)); 0,28 (*s*, Me₂Si); (*Z*)-Isomer: 5,30–5,23 (*m*, H–C(3)); 4,19 (*s*, CH₂(1)); 1,76–1,73 (*m*, Me–C(2)); rel. Intensitätsverhältnis der Signale der (*E*)/(*Z*)-Isomeren *ca*. 7:1. ¹³C-NMR (75,5 MHz, CDCl₃; (*E*)-Isomer): 133,6 (C(2)); 126,6 (C(3)); 69,4 (C(1)); 31,7, 27,3, 22,4 (C(4), C(5), C(6)); 16,0 ((CH₂Br)Si); 14,0 (C(7)); 13,5 (*Me*–C(2)); -3,1 (Me₂Si). MS: (15°): 280 (10, *M*⁺), 278 (11, *M*⁺), 265 (2, [*M* – Me]⁺), 263 (1, [*M* – CH₂Br]⁺), 153 (67, [Me₂SiCH₂Br]⁺), 157 (100, [Me₂SiCH₂Br]⁺), 125 (41), 123 (35), 115 (23), 110 (45), 109 (15), 95 (23), 75 (77), 55 (24), 45 (9), 43 (11), 41 (13), 28 (11).

 (\pm) -(4 RS,5 RS)- und (\pm) -(4 RS,5 SR)-4-Butyl-2,2,5-trimethyl-1-oxa-2-silacyclohexan (8a bzw. 8b). Eine Lsg. von 0,56 g (2,0 mmol) 6 in 50 ml Benzol wurde zum Rückfluss erhitzt. Mit einem Dosimat wurde eine Lsg. von 0,81 g (2,8 mmol) Bu₃SnH und 22 mg (0,06 mmol) 2,2'-Azobis(isobutyronitril) (AIBN) in 10 ml Benzol innert 2 h zugetropft und das Gemisch weitere 2 h unter Rückfluss gekocht. Eindampfen und FC (Et₂O/Pentan 1:40, Kieselgel; 2×) des Rückstandes lieferten 116 mg (29%) 8a/8b 1:2 als farbloses Öl ($R_{\rm f}$ 0,50) und 158 mg (62%) 7 mit ($R_{\rm f}$ 0,08). GC (*HP-1*, 40–250°, 3°/min): 2 Signale ohne Basispeak-Trennung: $t_{\rm R}$ 21,2 (8a) und 21,4 (8b; gesamthaft 98%). Anal. GC (40% Heptakis(2,3,6-tri-O-propyl)- β -cyclodextrin, 40° isotherm): 33% 8a ($t_{\rm R}$ 226,3) und 67% 8b ($t_{\rm R}$ 236,7); keine Enantiomerentrennung. Zur NMR-Analyse gelangte das Gemisch der Fraktion mit $R_{\rm f}$ 0,50.

8a: ¹H-NMR (300 MHz, CDCl₃): 3,80, 3,43 (*AB* von *ABX*, $J_{AB} = 11,4$, $J_{AX} = 9,8$, $J_{BX} = 3,5$, CH₂(6)); 1,59–1,50 (*m*, H–C(5)); 1,48–1,41 (*m*, H–C(4)); 1,43–1,14 (*m*, CH₂(1'), CH₂(2'), CH₂(3')); 0,90 (*t*, *J* = 7,4, Me(4')); 0,80 (*d*, *J* = 6,3, Me–C(5)); 0,73, 0,36 (*AB* von *ABX*, $J_{AB} = 14,3$, $J_{AX} = 11,5$, $J_{BX} = 3,4$, CH₂(3)); 0,15, 0,14 (2s, Me₂Si). ¹³C-NMR (75,5 MHz, CDCl₃): 70,6 (C(3)); 39,7, 38,9 (C(4), C(5)); 35,9 (C(1')); 27,6 (C(2')); 23,0 (C(3')); 18,0 (C(6)); 15,2 (*Me*–C(4)); 10,0 (C(4')); -0,2, -2,5 (Me₂Si). GC/MS (*SE*-54): 186 (0,5), 185 (3, [*M* – Me]⁺), 171 (1), 157 (< 1), 144 (4), 143 (31, [*M* – Bu]⁺), 129 (2), 117 (6), 116 (12), 115 (42), 113 (4), 101 (42), 99 (14), 89 (16), 85 (20), 75 (100), 73 (14), 61 (24), 59 (41), 55 (20), 47 (21), 45 (29), 44 (20), 43 (35), 41 (32), 40 (37), 39 (12).

8b: ¹H-NMR (300 MHz, CDCl₃): 3,89, 3,76 (*AB* von *ABX*, $J_{AB} = 11,2$, $J_{AX} = 2,9$, $J_{BX} = 2,3$, CH₂(6)); 1,84–1,72 (*m*, H–C(5)); 1,71–1,59 (*m*, H–C(4)); 1,43–1,14 (*m*, CH₂(1'), CH₂(2'), CH₂(3')); 0,91 (*d*, J = 7,2, Me–C(5)); 0,90 (*t*, J = 7,4, Me(4')); 0,53, 0,47 (*AB* von *ABX*, $J_{AB} = 14,5$, $J_{AX} = 11,5$, $J_{BX} = 5,1$, CH₂(3)); 0,16, 0,13 (2s Me₂Si). ¹³C-NMR (75,5 MHz, CDCl₃): 70,4 (C(3)); 37,5, 35,9 (C(4), C(5)); 37,3 (C(1')); 29,4 (C(2')); 22,9 (C(3')); 15,3 (C(6)); 14,2 (*Me*–C(4)); 10,0 (C(4')); -0,3, -2,2 (Me₂Si). GC/MS (*SE*-54): 201 (0,2), 200 (1, *M*⁺),

 $186 (0,4), 185 (3, [M - Me]^+), 171 (<1), 168 (<1), 157 (<1), 144 (5), 143 (8, [M - Bu]^+), 129 (2), 115 (8), 113 (2), 101 (6), 99 (5), 90 (9), 89 (100), 88 (34), 85 (5), 75 (28), 73 (4), 61 (7), 59 (22), 58 (15), 55 (7), 45 (8), 43 (12), 41 (10).$

 (\pm) -(2RS,3RS)- und (\pm) -(2RS,3SR)-2-Butyl-3-methylbutan-1,4-diol (9a bzw. 9b). Zu einer Lsg. von 70 mg (0,35 mmol) 8a/8b in 2 ml THF und 2 ml MeOH wurden 212 mg (2,0 mmol) Na₂CO₃ und 1,2 ml (6,9 mmol) 30% H₂O₂-Lsg. gegeben und dann 18 h unter Rückfluss erhitzt. Nach Abkühlen wurden zum Zerstören von verbleibendem Peroxid 0,75 ml ges. Na₂SO₃-Lsg. zugegeben und 5 min gerührt. Nach Eindampfen wurde der Rückstand in 5 ml H₂O aufgenommen und 6× mit Et₂O extrahiert. Die vereinigten org. Extrakte wurden getrocknet (Na₂SO₄) und eingedampft: 47,1 mg (84%) 9a/9b. Farbloses Öl. R_f 0,32 (Et₂O/Pentan 4 :1). GC (SE-54, 40-250°, 3°/min): 33% 9a (t_R 28,6) und 67% 9b (t_R 28,1). Präp. GC: keine Trennung auf 5% XE-60 (isotherm 60° oder isotherm 80°) oder auf 5% Carbowax 4000 (isotherm 60° oder isotherm 80°). Zur Analyse gelangte das Gemisch der Fraktion mit R_f 0,32.

9a: ¹H-NMR (300 MHz, CDCl₃): 3,58–3,47 (*m*, CH₂(1), CH₂(4)); 3,22 (br. *s*, 2 OH); 1,95–1,83 (*m*, H–C(3)); 1,69–1,58 (*m*, H–C(2)); 1,42–1,12 (*m*, CH₂(1'), CH₂(2'), CH₂(3')); 0,90 (*t*, J = 6,3, Me(4')); 0,89 (*d*, J = 7,1, Me–C(3)). ¹³C-NMR (75,5 MHz, CDCl₃): 66,3 (C(4)); 63,2 (C(1)); 43,9 (C(2)); 38,0 (C(3)); 30,0, 27,8 (C(1'), C(2')); 23,0 (C(3')); 14,1 (*Me*–C(3)); 12,7 (C(4')). GC/MS (*SE-54*): 140 (3), 131 (< 1), 113 (2), 112 (7), 111 (3),100 (7), 97 (12), 95 (6), 85 (22), 84 (11), 83 (37), 82 (9), 79 (6), 71 (12), 70 (34), 69 (39), 68 (11), 67 (18), 58 (12), 57 (24), 56 (48), 55 (100), 53 (11), 43 (42), 42 (24), 41 (100), 39 (34), 36 (8).

9b: ¹H-NMR (300 MHz, CDCl₃): 3,63–3,47 (*m*, CH₂(1), CH₂(4)); 3,22 (br. *s*, 2 OH); 1,82–1,72 (*m*, H–C(3)); 1,49–1,39 (*m*, H–C(2)); 1,42–1,12 (*m*, CH₂(1'), CH₂(2'), CH₂(3')); 0,98 (*d*, J = 7,1, Me–C(3)); 0,90 (*t*, J = 6,3, Me(4')). ¹³C-NMR (75,5 MHz, CDCl₃): 64,9 (C(4)); 62,1 (C(1)); 43,8 (C(2)); 37,2 (C(3)); 29,9, 28,8 (C(1'), C(2')); 23,0 (C(3')); 15,2 (*Me*–C(3)); 12,7 (C(4')). GC/MS (*SE-54*): 112 (5), 100 (8), 97 (8), 95 (6), 85 (21), 84 (11), 83 (29), 82 (8), 81 (12), 71 (8), 70 (31), 69 (70), 68 (8), 67 (18), 58 (10), 57 (26), 56 (58), *55* (100), 54 (8), 53 (15), 43 (42), 42 (27), 41 (97), 39 (35), 36 (10).

LITERATURVERZEICHNIS

- Übersichten: A. L. J. Beckwith, C. M. Schiesser, *Tetrahedron* 1985, 41, 3925; D. C. Spellmeyer, K. N. Houk, J. Org. Chem. 1987, 52, 959.
- [2] J.W. Wilt, Tetrahedron 1985, 41, 3979.
- [3] E.R. Lee, I. Lakomy, P. Bigler, R. Scheffold, Helv. Chim. Acta 1991, 74, 146.
- [4] H. Nishiyama, T. Kitajiama, M. Matsumoto, K. Itoh, J. Org. Chem. 1984, 49, 2298.
- [5] R. Gleiter, K. Müllen, Helv. Chim. Acta 1974, 57, 823.
- [6] E.J. Reist, J.G. Junga, B.R. Baker, J. Org. Chem. 1960, 25, 1673.
- [7] C. Cahiez, A. Alexakis, J. F. Normant, Synthesis 1978, 528.
- [8] W.P. Neumann, Synthesis 1987, 665.
- [9] J. W. Wilt, F. G. Belmonte, P. A. Zieske, J. Am. Chem. Soc. 1983, 105, 5665.
- [10] K. Tamao, N. Ishida, M. Kumada, J. Org. Chem. 1983, 48, 2120.
- [11] G. H. Posner, Ch. E. Whitten, J. J. Sterling, J. Am. Chem. Soc. 1973, 95, 7788.